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Abstract

In this study, free convection in a vertical cavity heated from the four walls by uniform heat fluxes is considered.

Analytical solutions are derived for a fully developed base flow, for which linear stability analysis predicts the growth of

oblique, three-dimensional disturbances in general. A Hopf type bifurcation occurs at the critical Rayleigh number,

over the entire range of Prandtl numbers and heat flux ratios considered, characterized by oscillating instabilities.

Depending mostly on the value of the Prandtl number, either thermal, for Pr > 1, or hydrodynamic, for Pr < 1, in-

stability modes are predicted. For small Prandtl numbers, both modes can occur at the codimension two intersection

points of the critical branches.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The possibility of obtaining parallel flow patterns has

been reported many times in the litterature on the clas-

sical problem of natural convection in a rectangular

enclosure. Bejan [1], for instance, described a parallel

flow region in a thin, vertical, fluid saturated, porous

cavity insulated on the sides and heated from the top by

a constant flux. In the case of shallow cavities filled with

a fluid, this time, the works of Cormack et al. [2,3] as

well as Imberger [4] and Bejan and Tien [5] also men-

tioned the existence of parallel flow in convection when

different temperatures were imposed on the sides of the

cavity and the top and bottom were kept insulated.

It is well known, both theoretically and experimen-

tally, that the parallel flows mentioned above may be-

come unstable at high Reynolds numbers. In general, the

critical value for the onset of the flow instability regime

is strongly dependent on the boundary conditions im-

posed on the walls of the enclosure, as described in the
* Corresponding author. Tel.: +1-514-370-4711/4507; fax:

+1-514-370-5917.

E-mail address: miprud@meca.polymtl.ca (M. Prud�-
homme).

0017-9310/03/$ - see front matter � 2003 Elsevier Ltd. All rights res

doi:10.1016/S0017-9310(03)00192-3
works of Kassoy and Cotte [6], Wang et al. [7] and those

of Vasseur et al. [8], Sen et al. [9] for an inclined cavity.

In a slightly different context, Nield [10] showed that

different instability regimes, in a shallow porous satu-

rated layer submitted to an oblique temperature gradi-

ent, could be obtained by varying the vertical to lateral

temperature gradient ratio. Kimura et al. [11] considered

the stability problem for a porous medium in the same

geometry as Nield, but this time for insulated vertical

boundaries and a constant heat flux applied from below.

They found a critical transition from the steady parallel

base flow to an oscillatory instability regime.

For a fluid medium, Korpela et al. [12] determined

that the instability in a vertical cavity with a fixed tem-

perature difference on the sides is either of hydrody-

namic or thermal origin depending on the Prandtl

number. They established that the critical modes are

hydrodynamic and stationary if Pr < 12:7 and thermal

and oscillatory if Pr > 12:7. The analysis was extended
by Bergholz [13] to a wide range of Prandtl numbers and

levels of stratification of the base flow. His work showed

that transition from stationary to oscillatory modes

occurs with increasing stratification at small Prandtl

numbers, and from oscillatory to stationary at large

Prandtl numbers. Suslov and Paolucci [14] also examined
erved.
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Nomenclature

A aspect ratio

C constant

D derivative operator

d distance between the walls

F factor

g gravity

ĝg unit vector

H height

k vertical wavenumber

kT thermal concuctivity

L operator

l transverse wavenumber

N number of grid points

p pressure

Pr Prandtl number

Q transverse heat flux

q heat flux ratio

Ra Rayleigh number

Re real part

t time

T temperature

u velocity vector

u, v, w velocity components

x, y, z coordinates

Greek symbols

a stratification parameter

aT thermal diffusivity

bT coefficient of thermal expansion

b direction of propagation

c parameter

D increment

h base flow temperature profile

m kinematic viscosity

q density

r complex amplification rate

w base flow stream function

x oscillation frequency

Superscripts

� disturbance quantity, 3-D
^ disturbance quantity, 1-D

Subscripts

c critical value

i imaginary part

r real part

0 reference value

Other symbols

D=Dt material derivative

j j modulus

r gradient

r2 laplacian

Fig. 1. Geometry and boundary conditions.
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flow instability in a vertical cavity with a fixed temper-

ature difference on the sides, but under non-Boussinesq

conditions and no stratification of the base flow tem-

perature field. They reported, assuming the transport

properties of air for the active fluid, two modes of os-

cillatory instabilities: a shear-driven one for the smaller

temperature differences and a buoyancy-driven one for

the larger temperature differences.

For a cylindrical annulus with the inner and outer

walls maintained at different temperatures, Bahloul et al.

[15] showed the existence of oscillatory thermal and

hydrodynamic oscillatory modes. They found that in the

limiting case of a radius ratio tending to 1, i.e. vertical

parallel walls, the hydrodynamic mode becomes sta-

tionary, in agreement with the findings of the authors

above [12,13].

Even though natural convection generated within a

cavity by a given heat flux can be encountered in many

types of configurations, in such diverse contexts as

geophysics problems or the conception of electrochem-

ical systems, nearly adiabatic conditions on the rest of

the boundary do not always occur in practice. This

problem has received little attention so far. The purpose

of the present study is then to perform a stability anal-
ysis for a fluid in a vertical cavity heated by crossed

uniform heat fluxes, of different magnitudes, on the

horizontal and vertical walls, as sketched in Fig. 1, and

to determine the critical parameters dependence on the

Prandtl number and heat flux ratio q. Analytical solu-
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tions for the base flow stream function and temperature

field are first derived within the parallel flow approxi-

mation, and validated against numerical simulations.

Linear stability equations are then solved to determine

critical parameter values at different Prandtl numbers

and heat flux ratios.
q = 3q = 0

Fig. 2. Flow in a finite cavity, Ra ¼ 105 and A ¼ 5.
2. Problem definition

Stability of free convection flow is examined within a

tall and deep enclosure as in Fig. 1, with adiabatic walls

in the normal direction and heated by crossed fluxes on

the remaining walls, as sketched. It is assumed from the

start that the temperature differences are small enough

for Boussinesq conditions to prevail [16]. For convection

taking place in a newtonian, incompressible fluid of

constant kinematic viscosity m, thermal diffusivity aT and
coefficient of thermal expansion bT, length, temperature,

velocity and time can be scaled according to

d; DT ¼ Qd
kT

;
aT
d
;

d2

aT
ð1Þ

where all properties are evaluated at some reference

temperature T0. Using the standard Boussinesq ap-

proximation for the density q ¼ q0½1	 bTðT 	 T0Þ
 in
the body force, the dimensionless governing equations of

the problem become

r �~uu ¼ 0 ð2Þ

D

Dt
~uu ¼ 	rp þ Prr2~uu	 RaPrT ĝg ð3Þ

DT
Dt

¼ r2T ð4Þ

in terms of the Prandtl number Pr ¼ m=aT and the

Rayleigh number Ra ¼ gbTDTd
3=maT.
3. Base flow

For sufficiently large values of the aspect ratio A,
fully developed flow conditions are possible in the cen-

tral part of the cavity, with streamlines nearly parallel

with the y axis, as shown in Fig. 2 for Ra ¼ 105 and

q ¼ 0 as well as q ¼ 3. The extent of the parallel flow

region within the cavity is not as large for q ¼ 3 as for

q ¼ 0 however, so that one would normally expect that

aspect ratios A > 5 are required in order to make the

parallel flow approximation for larger values of q.
When the approximation is valid, the base flow can

be described from a stream function of the form

w ¼ wðxÞ only. The continuity equation (2) is then au-

tomatically verified, while the momentum equation (3)

reduces to
w0000 	 Ra
oT
ox

¼ 0 ð5Þ

with boundary conditions w ¼ w0 ¼ 0, x ¼ �1=2. Dif-
ferentiating Eq. (5) with respect to y shows that the

temperature profile must have the form T ¼ hðxÞ þ gðyÞ.
It follows next from the temperature equation (4) that

gðyÞmust be linear in y in order to avoid trivial solutions
for the stream function. The temperature field, up to an

additive constant, is therefore given by

T ¼ hðxÞ þ ay ð6Þ

where a is the vertical temperature gradient, with a > 0

for stable stratification, while h must satisfy the

boundary condition h0 ¼ 1, x ¼ �1=2. The temperature
equation may then be integrated once to get

h0ðxÞ ¼ 	aw þ 1 ð7Þ

Eliminating now T from Eq. (5) using Eqs. (6) and (7)

leads to an equation in terms of W only

w0000 þ aRaw ¼ Ra ð8Þ

The solution of Eq. (8) above is given by

wðxÞ ¼ 1

a
RefC coshðkxÞ þ 1g ð9Þ

where k and CðcÞ are complex quantities, defined re-

spectively from k ¼ cð1þ iÞ, where 4c4 ¼ aRa and

C ¼ 2k� sinhðk�=2Þ
ci½sinhðcÞ þ sinðcÞ
 ð10Þ

For a given value of a, the solution for hðxÞ is found
at once from Eqs. (7) and (9) as
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hðxÞ ¼ 	Re C
k
sinhðkxÞ

� �
ð11Þ

For the crossed flux heating considered here, the

vertical temperature gradient is not an independent pa-

rameter, as it was under the set of boundary conditions

prescribed in the study of Bergholz [13]. It cannot be

specified a priori, but must be determined instead for

given values of Ra and q, from thermal energy conser-

vation requirements, as follows. The temperature equa-

tion (4) in conservative form has to be integrated over an

arbitrary section of the cavity in the first place. Using

then the divergence theorem, Eq. (6) and the boundary

condition oT=oy ¼ 	q at y ¼ 0 leads to

Z 1=2

	1=2

ow
ox

T
�

þ oT
oy

�
dx ¼ 	q ð12Þ

The left-hand side of Eq. (12) may be evaluated using

Eqs. (9) and (11) to obtain for a the transcendental

equation

a2 þ aqþ DðcÞ ¼ 0

DðcÞ ¼ Re

4
C2 1

��
	 sinhðkÞ

k

�� ð13Þ

Solutions of Eq. (13) for heat flux ratio values q ¼ 0,

1, 3 are presented in Fig. 3. It is seen that the stratifi-

cation parameter a is negative at first for small Rayleigh

numbers and subsequently becomes positive for all the

larger values of Ra afterwards. Let us mention briefly

that multiple parallel flow solutions for unstable strati-

fication with a < 0 may also exist at a given Rayleigh

number. The dashed and dotted plots for q ¼ 3 shown

on the figure, for illustrative purposes only, correspond

to such solutions, which are confined to a certain range

of Rayleigh numbers. Each represents either a bicellular

natural or antinatural pattern or a unicellular antinat-
Ra
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Fig. 3. Stratification parameter a vs Ra. A1: antinatural, 1 cell;
A2: antinatural, 2 cells; N2: natural, 2 cells.
ural pattern, and we shall consider only the base flow

solution with a > 0 for the stability analysis.

It is instructive at this point to consider the behavior

of DðcÞ in Eq. (13) in the limiting cases of small and

large values of c. Expanding D in powers of c shows that
D � 	aRa=720 to leading order, as a gets close to zero.

Thus, stable stratification occurs only when Ra > 720q.
For large Rayleigh numbers, boundary layer are formed

at the vertical walls and some simplifications can be

made in the model. When c is greater than 5.0 or so, it is
possible to make first the approximation C �
23=2 expð	k=2	 3pi=4Þ in Eq. (10) and D � 	1=2c for

a > 0 in Eq. (13), which then simplifies to

a9=4 þ a5=4q	 ð4RaÞ	1=4 ¼ 0 ð14Þ

Table 1 compares the values of the stratification pa-

rameter obtained from Eqs. (13) and (14). It is clear

from the data that both forms are nearly equivalent for

Ra ¼ 105 and beyond. For the sake of completeness, the

boundary layer counterparts of the base flow solutions

Eqs. (9) and (11) are given below as

wðxÞ ¼ 1

a
ff1ðxÞ þ f	1ðxÞg;

fnðxÞ ¼
ffiffiffi
2

p
exp½cðnx	 1=2Þ
 cos½cðnx	 1=2Þ

	 3p=4
 þ 1=2

hðxÞ ¼ 1

c
fg1ðxÞ 	 g	1ðxÞg;

gnðxÞ ¼ exp½cðnx	 1=2Þ
 cos½cðnx	 1=2Þ


ð15Þ

where the contributions of the right- and left-hand side

boundary are referred to by n ¼ 1 and )1, respectively.
4. Linear stability analysis

Let small amplitude perturbations of the tempera-

ture, pressure, and velocity field components of the form

~ff ¼ Reff̂f ðxÞ exp½rt þ iðky þ lzÞ
g ð16Þ

be added to the base flow, where f̂f is a complex quan-

tity, k and l are the real vertical and transverse wave-
Table 1

Base flow parameters, q ¼ 3, exact and boundary layer values

Ra a exact a boundary

layer

c exact c
boun-

dary

layer

2.5� 104 4.974� 10	2 4.108� 10	2 4.200 4.003

5.0� 104 4.098� 10	2 3.581� 10	2 4.757 4.600

1.0� 105 3.323� 10	2 3.121� 10	2 5.369 5.285

2.0� 105 2.736� 10	2 2.712� 10	2 6.082 6.073

4.0� 105 2.334� 10	2 2.370� 10	2 6.951 6.977
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numbers, respectively, and r ¼ rr þ iri is the complex

amplification rate. The wavenumber vector components

are assumed real, as it is customary for temporal sta-

bility analysis. Substitution of the sum of the base flow

and perturbation variables, into the set of governing

equations (2)–(4), followed by linearization to first-order

in small quantities, yields the system of equations

Dûuþ ikv̂vþ ilŵw ¼ 0

ðF 	 PrLÞûu ¼ 	Dp̂p

ðF 	 PrLÞv̂v ¼ 	ikp̂p þ w00ûuþ RaPrT̂T

ðF 	 PrLÞŵw ¼ 	ilp̂p

ðF 	 LÞT̂T ¼ 	h0ûu	 av̂v

ð17Þ

in which D is simply equal to d=dx and F ¼ r 	 ikw0,

while L stands for the operator D2 	 k2 	 l2. This set

of equations, together with the boundary conditions

ûu0 ¼ ûu ¼ v̂v ¼ ŵw ¼ T̂T 0 ¼ 0 at x ¼ �1=2, defines an eigen-

value problem in r for a set of given parameter values

Ra, Pr, q, k and l.
It is clear from Eq. (17) that the velocity field be-

comes uncoupled from temperature when v̂v vanishes, so
that the only possible two-dimensional instability that

could occur is the one resulting from a disturbance in

which l ¼ 0. Unfortunately, unless a ¼ 0, Squire�s
transformation (see, for instance, Drazin and Reid [18])

cannot be used here to formally reduce the three-

dimensional stability problem to an equivalent two-

dimensional one. We must deal therefore with the full

three-dimensional stability problem. Let us first elimi-

nate p̂p and ŵw from Eq. (17) using the continuity and

transverse momentum equations and rewrite the prob-

lem in matrix form

PrL2 þ ikðw0L	 w000Þ 0 	ikRaPrD

kðkw0 	 iPrLÞDþ l2w00 ~kk2ðikw0 þ PrLÞ l2RaPr

	h0 	a Lþ ikw0

3
775

�
ûu

v̂v

T̂T

8><
>:

9>=
>; ¼ r

L 0 0

	ikD ~kk2 0

0 0 1

2
64

3
75

ûu

v̂v

T̂T

8><
>:

9>=
>; ð18Þ

where ~kk2 ¼ k2 þ l2 is simply the modulus of the wave-

number vector. Solution of Eq. (18) can be achieved in

several ways. One of the most straightforward is to solve
Table 2

Predicted Rac � 10	3 previous Galerkin method and present finite-diff

Pr c Bergholz Presen

0.73 6.0 134.77 137.25

5.0 3.0 57.95 58.11

5.0 8.0 163.55 161.85

12.7 1.0 87.50 86.88

12.7 7.0 128.14 127.14
the equations by finite-differences. Five-point central

schemes are used for the velocity equations, allowing

fourth-order accuracy for the first and second deriva-

tives and second-order accuracy for the higher deriva-

tives. The standard, three-point, second-order scheme is

employed for the temperature equation. Neuman-type

boundary conditions for the velocity and temperature

perturbation are discretized using forward and back-

ward difference formulas of the fourth and second order,

respectively.

For N computational points, the resulting discrete

system has 3N eigenvalues that can be found using a

standard IMSL subroutine such as DGVCCG. The va-

lue of Ra for which the maximal growth rate rr among

the 3N eigenvalues cancels is determined iteratively by

Newton�s method, holding q, k, l, Pr constant. Repeat-
ing the procedure for different wavenumbers k or l de-
termines a marginal stability surface for the given values

of q and Pr. The minimum value of Ra over the stability
surface corresponds to the critical Rayleigh number

Racðq; PrÞ.
Using finite-difference schemes to solve the eigen-

value problem requires a larger number of computa-

tional points to obtain accurate results than, say,

Chebyshev or spectral methods. The computational time

needed to achieve convergence remains quite reasonable

however. It is instructive to validate our approach by

trying to duplicate the results obtained by Bergholz with

Galerkin�s method. Let us mention that the eigenvalue

equations in Bergholz�s case are the same as ours in Eq.

(18) when l ¼ 0, the only difference being the form of the

base flow and the boundary condition T̂T ¼ 0 at the

endpoints. Table 2 shows excellent agreement between

the values of the critical Rayleigh number Rac calculated
by Bergholz using from 24 to 30 eigenfunctions and by

us using N ¼ 80 or N ¼ 100 computational points.
5. Results

The validity of the parallel flow approximation in a

finite cavity may be established for different values of q,
by solving numerically the full set of governing equa-

tions (2)–(4), at moderate Rayleigh numbers. Initial test

calculations are carried out for Ra ¼ 105 and Pr ¼ 1 with
erence approach

t N ¼ 60 Present N ¼ 80 Present N ¼ 100

136.10 135.59

58.04 58.00

162.61 162.94

87.17 87.30

127.57 127.75
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Fig. 5. Streamfunction maximum vs Ra for Pr ¼ 1, q ¼ 0, 1, 3.
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fully implicit time discretization, using the power-law

scheme of Patankar [17] for spatial discretization by

control volumes, which is adequate for a flow of this

type.

The parallel character of the base flow over the

central region of the cavity is verified in Fig. 4 for AP 4

or so when q ¼ 1 whereas aspect ratios of the order of 9

are required for q ¼ 10. The subsequent plots in Fig. 5 of

Wð0Þ versus Ra obtained from Eq. (9), which is strictly

valid only for a cavity extending to infinity along y, are
also in good agreement with the numerical maxima for

an aspect ratio A ¼ 5 and confirm the validity of the

parallel approximation for small values of q. As Ra in-

creases, however, the influence of the top and bottom

ends of the cavity on the flow pattern becomes more

important and the agreement between theory and nu-

merical solution is not as close as for the lower Ra
values.

Preliminary calculations with the eigenvalue problem

equation (18) reveal that two-dimensional disturbances

propagating along the y-direction are the most unstable

only for small Prandtl numbers. The critical distur-

bances are otherwise three-dimensional for any other

value of Pr, propagating at some angle b in the (y–z)
plane. The purpose of this angle is to define the direction

of propagation in such a way that k ¼ ~kk cos b and

l ¼ ~kk sin b. Consequently, the discussion of the stability

results to follow is better done in terms of ~kk and b
instead of k and l.

From a general point of view, it can be expected that

the physical origin of the instabilities will be different,

depending on the value of Pr. Either hydrodynamic

modes, due to a destabilization of the velocity profile, or

thermal modes, due to a destabilization of the temper-

ature profile will occur first. If Pr < 1, thermal diffusivity

is greater than viscous diffusivity and thermal distur-

bances of the base flow are prone to be dissipated faster

than hydrodynamic disturbances. Clearly, the instabili-

ties are then most likely to be caused by hydrodynamic
A
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Fig. 4. Streamfunction maximum vs A, Pr ¼ 1.
disturbances gaining energy from the base flow by the

action of shear. On the other hand, as Pr increases,

thermal disturbances are expected to be at the origin

of the main mode of instabilities.

Solutions of the eigenvalue problem equation (18)

also reveal that ri is always different from zero on the

stability curves, on which rr ¼ 0 by definition. This in-

dicates a Hopf bifurcation of the base flow solution,

characterized by oscillating instability modes. Unlike

what was found [12,13] in the case of a vertical cavity

with a fixed temperature difference imposed between the

walls, oscillating instabilities are predicted over the en-

tire range of parameters Ra, Pr and q considered in the

present study. Fig. 6 displays the marginal stability

curves along the critical direction bc for Pr ¼ 1 and

different values of q. It is noticed that there is only one

minimum in the stability curve for q ¼ 1 or 2 while the

curve for q ¼ 10 has two branches and displays not one,

but two minima. Each minimum indicates the critical

Rayleigh number for a different mode of instability,

driven by different physical mechanisms.

Some insight on the physical significance of the dif-

ferent modes of instability can be gained from the ki-

netic and thermal potential energy balances of the

disturbances. Multiplying the first equation of the ei-

genvalue problem system equation (18) by ûu�, the second
one by v̂v�, the last one by T̂T �, integrating from x ¼ 	1=2
to x ¼ 1=2 and taking the real part of the results gives,

after a few rearrangements

rrEkin ¼ 	Pr _EEvis þ _EEU þ RaPr _EEb

rrEpot ¼ 	 _EEdif 	 a _EEb þ _EET

ð19Þ

for the rates of change of the disturbance kinetic energy

Ekin and thermal potential energy Epot defined in

Appendix A along with all the other terms in Eq. (19).

The first terms on the right-hand side 	Pr _EEvis and 	 _EEdif ,

always negative, account for the rates of loss of kinetic
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energy due to viscous dissipation and loss of potential

energy due to heat diffusion, respectively. In the re-

maining terms, _EEU is the rate of kinetic energy transfer

from the base flow, RaPr _EEb is the rate of change of ki-

netic energy caused by buoyancy while 	a _EEb represents

the rate of change of potential energy related to strati-

fication. Finally, _EET is the rate of change of potential

energy associated with the interactions of the distur-

bance with the horizontal base flow temperature gradi-

ent.

The relative values for the various terms entering the

energy balances Eq. (19), computed using N ¼ 90, are

displayed in Table 3 for q ¼ 10, at critical points for

several Prandtl numbers. Normalization of the data is

done in such a way that 	Pr _EEvis ¼ 	1 and 	 _EEdif ¼ 	1.
Therefore the sum of the normalized _EEU and RaPr _EEb

values, as well as that of the normalized 	a _EEb and _EET,

should be equal to one in principle on the stability curve.

The fact that they are indeed very close to unity is also a

good indicator that the solutions are correct. One can

see from the data that the disturbance derives the bulk of

its kinetic energy from the buoyancy term in every case

but one. Hence, instability is normally buoyancy-driven

except for Pr values smaller than one, in which case it

can be shear-driven from the mean flow. Going back to

Fig. 6, the conclusion is that thermal instability is the

preferred instability mode for q ¼ 10 and Pr ¼ 1. The

other minimum gives the critical Rayleigh number for
Table 3

Relative values of terms in disturbance energy balances equation (19)

Pr ~kkc _EEU=Pr _EEvis R

50 2.621 0.0419

10 1.909 0.1527

1 0.697 0.0992

0.441 0.483 0.3539

0.441 1.633 1.2695 )
the hydrodynamic mode, characterized by higher

wavenumber wavelength and faster oscillations. For the

lower heat flux ratio values q ¼ 1 and 2, only critical

Rayleigh numbers for thermal instability are found.

Also shown on Fig. 6 are the oscillations in the

maximum stream function value of the numerical solu-

tion of Eqs. (2)–(4), obtained in a cavity of aspect ratio

A ¼ 5:4 from the same computer code used earlier to

simulate the base flow. The small oscillations were de-

tected using a 25 by 121 grid mesh and a time step

Dt ¼ 10	4 for q ¼ 2, Pr ¼ 1 and a Rayleigh number

Ra ¼ 1:15� 105, which is close to the theoretical pre-

diction Rac ¼ 1:27� 105 for the thermal mode. The

frequency of oscillation x � 140 of the numerical solu-

tion is also of the same order as the theoretical value

xc ¼ 200:4.
The transition from a shear-driven to a buoyancy-

driven instability under the influence of the Prandtl

number can be appreciated in Fig. 7, where marginal

stability curves are shown for q ¼ 10. It is clear from the

plots that the critical Rayleigh number corresponds to

the hydrodynamic instability mode for Pr ¼ 0:3 and to

the thermal instability mode for Pr ¼ 1:0. Only one

minimum is found on the graph for Pr ¼ 7, associated

with the thermal instability mode. It can be noticed that

the critical Rayleigh number is reduced as the Prandtl

number increases from small values. The initial influence

of the parameter Pr is thus a destabilizing one.

A better global picture is provided by Fig. 8, showing

the critical Rayleigh number Rac versus the Prandtl

number for different values of q. The conclusion is that

the base flow is much more stable for both very small

and rather large Prandtl numbers than for Pr values of
the order of, say, one. This is related to the stronger

viscous damping of velocity disturbances for large Pr
values and the quicker dissipation of temperature dis-

turbances by thermal diffusion for low Pr values. The

stabilizing influence of the Prandtl number within the

higher range of values is more or less pronounced de-

pending on the value of the heat flux ratio q, however.
The latter has an influence on the base flow solution

itself, and consequently on the stability of the flow. It is

found from Fig. 8, not surprisingly, that Rac increases as
q becomes smaller, since instabilities are known to occur
at very large Ra for a cavity heated sideways.
for q ¼ 10

a _EEb= _EEvis 	a _EEb= _EEdif
_EET= _EEdif

0.9576 )0.1241 1.1224

0.8431 )0.1221 1.1207

0.9011 )0.1404 1.1393

0.6459 )0.1283 1.1276

0.2708 0.3186 0.6828



Pr

0 10 20 30 40 50

β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

q = 10
q = 1
q = 2

Fig. 9. Critical direction of propagation bc vs Pr.

Pr
0 10 20 30 40 50

0

1

2

3

4

5

6

7

q = 10
q = 1
q = 2

ck
~

Fig. 10. Critical wavenumber vector modulus ~kkc vs Pr.

Pr
0 10 20 30 40 50

ωc

0

500

1000

1500

2000

q = 10
q = 1
q = 2

Fig. 11. Critical oscillation frequency xc vs Pr.

Pr

0 10 20 30 40 50

Rac

105

106

107

q =10
q = 1
q = 2

Fig. 8. Critical Rayleigh number vs Pr.

0 1 2 3 4 5 6

Ra

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

Pr = 7
Pr = 1
Pr = 0.3

k
~

βc = .072

Fig. 7. Marginal stability at critical b for q ¼ 10, Pr ¼ 0:3, 1, 7.

3838 M. Prud’homme et al. / International Journal of Heat and Mass Transfer 46 (2003) 3831–3840
Fig. 9 shows the direction of propagation bc of the

critical disturbance, versus Pr, for several values of q. It
is clear from the plot that two-dimensional disturbances

in the ðx; yÞ plane are the most unstable only for small

Prandtl numbers. For Prandtl numbers greater than 0.75

or 1, the critical disturbance involves a transverse ve-

locity component along z. Fig. 10 shows that the critical
wavenumber kc increases monotonically with Pr toward
asymptotic values for q ¼ 2 and 10. We can also observe

that smaller values of kc are found for larger values of q,
or equivalently, that the wavelength of the secondary

flow cells increase with q. The oscillation frequency

xc ¼ ri of the instability cells is also shown in Fig. 11.

The frequency is seen to increase with Pr for q ¼ 1 and

to level out in the other cases.

The question naturally arises as to whether both

buoyancy and shear driven instabilities can occur at the

same critical Rayleigh number for a given heat flux ratio

q. This is indeed the case for low Prandtl numbers.

Equivalently, the two instability modes can share the

same critical Rayleigh numbers at some q for a given Pr.

This situation corresponds to a point of intersection of

the hydrodynamic and thermal marginal stability curves
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in a ðPr;RaÞ or ðq;RaÞ plane, called a codimension two

point [19]. For q ¼ 10, the codimension point is located

at Pr ¼ 0:441, and the common critical Rayleigh number
for thermal and hydrodynamic modes has the value

Rac ¼ 4:22� 105. Terms of the disturbance energy bal-

ances are provided for each mode in Table 3. Stream-

lines and isotherms are represented in Fig. 12, without

the time-dependence, for each respective type of distur-

bance. There are numerous qualitative differences be-

tween the thermal and hydrodynamic modes. One of the

most striking features of the thermal mode being the

much longer cells and greater symmetry of the stream-

lines.

The Rayleigh number at the codimension point is

found to increase almost linearly with q, from a value of

Rac ¼ 2:087� 105 when q ¼ 3 to a value of Rac ¼
4:199� 105 when q ¼ 10. At the codimension points, the

values of the critical parameters k and x are always

higher for the hydrodynamic mode than for the thermal

mode, but vary otherwise in the same way with respect

to q. The wavenumber k decreases slowly, while the

oscillation frequency increases slightly. In a ðq; PrÞ
plane, the codimension points define a curve PrðqÞ rep-
resenting the borderline between the thermal (above)

and hydrodynamic (below) modes as shown in Fig. 13

which summarizes what type of instability will occur for

given values of the parameters q and Pr, according to the
linear stability theory.
ψther. Tther. ψhyd. Τhyd.

Fig. 12. Streamlines and isotherms for thermal and hydrody-

namic disturbances. Ra ¼ 4:220� 105, q ¼ 10, Pr ¼ 0:441.
6. Conclusion

The linear stability of parallel, free convection flow

within a tall vertical cavity submitted to crossed uniform

heat flux conditions on the boundaries has been exam-

ined. It is found that for stable stratification of the base

flow, three-dimensional instabilities will occur in gen-

eral. These instabilities are always oscillating, in contrast

with what is found when a constant temperature differ-

ence is imposed on the vertical walls. It is found that

shear-driven instabilities can occur for Pr < 1, but that

otherwise buoyancy-driven instabilities are predicted.

For small Prandtl numbers, both instability modes can

occur at the same time for a given heat flux ratio and

two-dimensional disturbances propagating along the

vertical axis can be critical.
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Appendix A

The various quantities appearing in the disturbance

energy balances equation (19) are defined as follows:

Ekin ¼
1

2

Z 1=2

	1=2
jûuj2 þ jv̂vj2 þ jŵwj2 dx

Epot ¼
1

2

Z 1=2

	1=2
jT̂T j2 dx

_EEvis ¼
1

2

Z 1=2

	1=2
~kk2ðjûuj2 þ jv̂vj2 þ jŵwj2Þ þ jûu0j2 þ jv̂v0j2

þ jŵw0j2 dx



3840 M. Prud’homme et al. / International Journal of Heat and Mass Transfer 46 (2003) 3831–3840
_EEdif ¼
1

2

Z 1=2

	1=2
jT̂T 0j2 þ ~kk2jT̂T j2 dx

_EEU ¼ 1

2

Z 1=2

	1=2
w00Reðûuv̂v�Þdx

_EEB ¼ 1

2

Z 1=2

	1=2
Reðv̂v�T̂T Þdx

_EET ¼ 	 1

2

Z 1=2

	1=2
h0ReðûuT̂T �Þdx
References

[1] A. Bejan, The boundary layer regime in a porous layer with

uniform heat flux from the side, Int. J. Heat Mass Transfer

26 (1983) 1339–1346.

[2] D.E. Cormack, L.G. Leal, J. Imberger, Natural convection

in a shallow cavity with differentially heated end walls, part

1. Asymptotic theory, J. Fluid Mech. 65 (1974) 209–

229.

[3] D.E. Cormack, L.G. Leal, J.H. Seinfeld, Natural convec-

tion in a shallow cavity with differentially heated end walls,

part 2, Numerical solutions, J. Fluid Mech. 65 (1974) 231–

246.

[4] J. Imberger, Natural convection in a shallow cavity with

differentially heated end walls, part 3, Experimental results,

J. Fluid Mech. 65 (1974) 247–260.

[5] A. Bejan, C.L. Tien, Laminar natural convection heat

transfer in a horizontal cavity with different end temper-

atures, J. Heat Transfer 100 (1978) 641–647.

[6] D.R. Kassoy, B. Cotte, The effects of sidewall heat loss on

convection in a saturated porous vertical slab, J. Fluid

Mech. 152 (1985) 361–378.
[7] M. Wang, D.R. Kassoy, P.D. Weidman, Onset of convec-

tion in a vertical slab of porous media between two

impermeable conducting blocks, Int. J. Heat Mass Transfer

30 (1987) 1331–1341.

[8] P. Vasseur, M.G. Satish, L. Robillard, Natural convection

in a thin inclined porous layer exposed to a constant heat

flux, Int. J. Heat Mass Transfer 30 (1987) 537–549.

[9] M. Sen, P. Vasseur, L. Robillard, Multiple steady states for

unicellular natural convection in an inclined porous layer,

Int. J. Heat Mass Transfer 30 (1987) 2097–2113.

[10] D.A. Nield, Convection in a porous medium with inclined

temperature gradient, Int. J. Heat Mass Transfer 34 (1991)

87–92.

[11] S. Kimura, M. Vynnycky, F. Alavyoon, Unicellular

natural circulation in a shallow horizontal porous layer

heated from below by a constant flux, J. Fluid Mech. 294

(1995) 231–257.

[12] S.A Korpela, D. G€ooz€uum, C.B. Baxic�, On the stability of the
conduction regime of natural convection in a vertical slot,

Int. J. Heat Mass Transfer 16 (1973) 1683–1690.

[13] R.F. Bergholz, Instability of steady natural convection in a

vertical fluid layer, J. Fluid Mech. 84 (1978) 743–768.

[14] S.A. Suslov, S. Paolucci, Stability of natural convection

flow in a tall vertical enclosure under non-Boussinesq

conditions, Int. J. Heat Mass Transfer 38 (1995) 2143–2157.

[15] A. Bahloul, I. Mutabazi, A. Ambari, Codimension 2 points

in the flow inside a cylindrical annulus with a radial

temperature gradient, Eur. Phys. J. 9 (2000) 253–264.

[16] D.D. Gray, A. Giorgini, The validity of the Boussinesq

approximation for liquids and gases, Int. J. Heat Mass

Transfer 19 (1976) 545–551.

[17] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,

McGraw-Hill, 1980.

[18] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cam-

bridge University Press, 1991.

[19] P. Chossat, G. Iooss, The Couette–Taylor Problem,

Springer-Verlag, 1994.


	Convection in a vertical cavity submitted to crossed uniform heat fluxes
	Introduction
	Problem definition
	Base flow
	Linear stability analysis
	Results
	Conclusion
	Acknowledgements
	Appendix A
	References


